Multiview geometry 2

Multiview geometry 2

Wide-Baseline Matching

Patch-based model

  • L2-Net
  • HardNet
  • SOSNet
  • HyNet

Dense Imaging Model

  • GIFT
  • GLU-Net

Joint Detection and Description

  • LIFT
  • LF-Net
  • SuperPoint
    • Self-supervised for local features
    • Loss funcVons
      • Detector loss + Descriptor loss
  • D2-NET
    • Feature descriptors: 이전에 DELF 나 CNNGeometric 처럼 Dense CNN Feature를 local descriptors로 본다. 이 descripctor vector는 Euclidean distance를 계산할 준비가 된 상태이다. 실제로는 채널 방향의 L2 norm을 한다.
    • feature detectors: raw CNN feature의 각 채널의 Post-processing을 통해 구한다
  • R2D2

Local Regional Information Estimation

  • OriNet
    • Learning to assign the local orientation values in the image matching pipeline
  • AffNet
    • Learning local affine shape estimator
  • Self-supervised learning of image scale and orientation estimation : SelfScaOri

Matching Models

  • Learning to find good correspondences
  • SuperGlue
    • context aggregation + matching + filtering

End-to-End Models

  • LoFTR
    • Based on transformer blocks
  • COTR
    • Correspondence Transformer
  • DKM

참조