Multiview geometry 2
Wide-Baseline Matching
Patch-based model
- L2-Net
- HardNet
- SOSNet
- HyNet
Dense Imaging Model
Joint Detection and Description
- LIFT
- LF-Net
- SuperPoint
- Self-supervised for local features
- Loss funcVons
- Detector loss + Descriptor loss
- D2-NET
- Feature descriptors: 이전에 DELF 나 CNNGeometric 처럼 Dense CNN Feature를 local descriptors로 본다. 이 descripctor vector는 Euclidean distance를 계산할 준비가 된 상태이다. 실제로는 채널 방향의 L2 norm을 한다.
- feature detectors: raw CNN feature의 각 채널의 Post-processing을 통해 구한다
- R2D2
- OriNet
- Learning to assign the local orientation values in the image matching pipeline
- AffNet
- Learning local affine shape estimator
- Self-supervised learning of image scale and orientation estimation : SelfScaOri
Matching Models
- Learning to find good correspondences
- SuperGlue
- context aggregation + matching + filtering
End-to-End Models
- LoFTR
- Based on transformer blocks
- COTR
- Correspondence Transformer
- DKM
참조